Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 329: 118163, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38588986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plants in the genus Hypericum (Hypericaceae), include more than 500 species worldwide, and many are valued for their medicinal properties, and are used as traditional herbal medicines. However, only H. perforatum is officially recognized as herbal drug in several pharmacopoeias, and used as an antidepressant clinically. Hypericum perforatum had been used as an herbal medicine since the Han Dynasty (206 B.C. -220 A.D.) in China. It taxonomically belongs to the section Hypericum in the genus Hypericum. There are about 42 species in the section Hypericum, with six species occurring in China. All six are recorded as traditional herbal medicines for treating aliments, including hepatitis, malaria, traumatic hemorrhage, irregular menstruation, wounds, and bruises. AIM OF THE STUDY: The study aimed to characterize the chemical profiles of five phylogenetically related Hypericum species, and compare their metabolites with three H. perforatum products. Informed by ethnobotanical use, the extracts prepared from the five species were further investigated into anticancer, anti-inflammatory and antiplasmodial activity. This study tested the hypothesis that systematic metabolomic and bioactivity characterization of species in section Hypericum will help to validate their phytotherapeutic use and reveal potential drug lead compounds. MATERIALS AND METHODS: Targeted and non-targeted metabolic analyses coupled with chemometrics were conducted on H. perforatum and four medicinal species, H. attenuatum, H. enshiense, H. erectum, and H. faberi, native to China from section Hypericum. UPLC-QTOF-MS/MS and UPLC-TQD-MS/MS were used for non-targeted and targeted metabolic analyses, respectively. Cytotoxicity bioassays on four cancer cell lines, anti-inflammation tests and anti-plasmodial activity on Plasmodium falciparum 3D7, selected based on traditional medicinal use, were evaluated on extracts from Hypericum species. Progenesis QI and EZinfo were used for chemometrics analysis to link the chemical profile and bioassay activity to aid in the identification of bioactive compounds. RESULTS: In total, 58 compounds were identified from the five species, including compounds with well-characterized bioactivity. Hypericum attenuatum, H. erectum, and H. perforatum, displayed the highest cytotoxicity, and contain the cytotoxic compounds petiolin A, prolificin A, and hypercohin G, respectively. Hypericum faberi and H. perforatum showed the highest anti-inflammatory activity, with pseudohypericin, quercetin and chlorogenic acid being observed at higher concentrations. Hypericum perforatum and H. erectum showed anti-plasmodial activity, with higher hyperforin and xanthones in these species that may account for the anti-plasmodial activity. CONCLUSIONS: This study characterized the chemical differences among five Hypericum species using metabolomics. These ethnomedically important species were tested for their biological activities in three distinct in vitro assays. The ethnobotanical data were useful for identifying bioactive Hypericum species. Hypericum attenuatum, H. erectum and H. faberi are promising phytotherapeutic species, although they are much less studied than H. perforatum, St. John's wort. Combining ethnobotanical surveys with chemometric analyses and bioactivity screening can greatly enhance the discovery of promising active constituents.

2.
Front Cell Infect Microbiol ; 14: 1347486, 2024.
Article in English | MEDLINE | ID: mdl-38410724

ABSTRACT

Cerebral malaria (CM) is one of the most severe complications of malaria infection characterized by coma and neurological effects. Despite standardized treatment of malaria infection with artemisinin-based combination therapies (ACT), the mortality rate is still high, and it primarily affects pediatric patients. ACT reduces parasitemia but fails to adequately target the pathogenic mechanisms underlying CM, including blood-brain-barrier (BBB) disruption, endothelial activation/dysfunction, and hyperinflammation. The need for adjunctive therapies to specifically treat this form of severe malaria is critical as hundreds of thousands of people continue to die each year from this disease. Here we present a summary of some potential promising therapeutic targets and treatments for CM, as well as some that have been tested and deemed ineffective or, in some cases, even deleterious. Further exploration into these therapeutic agents is warranted to assess the effectiveness of these potential treatments for CM patients.


Subject(s)
Malaria, Cerebral , Humans , Child , Malaria, Cerebral/drug therapy , Malaria, Cerebral/pathology , Blood-Brain Barrier/pathology
3.
Pathogens ; 12(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37111431

ABSTRACT

The impact of malaria-associated acute kidney injury (MAKI), one of the strongest predictors of death in children with severe malaria (SM), has been largely underestimated and research in this area has been neglected. Consequently, a standard experimental mouse model to research this pathology is still lacking. The purpose of this study was to develop an in vivo model that resembles the pathology in MAKI patients. In this study, unilateral nephrectomies were performed on wild-type mice prior to infection with Plasmodium berghei NK65. The removal of one kidney has shown to be an effective approach to replicating the most common findings in humans with MAKI. Infection of nephrectomized mice, compared to their non-nephrectomized counterparts, resulted in the development of kidney injury, evident by histopathological analysis and elevated levels of acute kidney injury (AKI) biomarkers, including urinary neutrophil gelatinase-associated lipocalin, serum Cystatin C, and blood urea nitrogen. Establishment of this in vivo model of MAKI is critical to the scientific community, as it can be used to elucidate the molecular pathways implicated in MAKI, delineate the development of the disease, identify biomarkers for early diagnosis and prognosis, and test potential adjunctive therapies.

4.
J Neurochem ; 164(4): 512-528, 2023 02.
Article in English | MEDLINE | ID: mdl-36437609

ABSTRACT

Huntingtin (Htt) is a large protein without clearly defined molecular functions. Mutation in this protein causes Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Identification of Htt-interacting proteins by the traditional approaches including yeast two-hybrid systems and affinity purifications has greatly facilitated the understanding of Htt function. However, these methods eliminated the intracellular spatial information of the Htt interactome during sample preparations. Moreover, the temporal changes of the Htt interactome in response to acute cellular stresses cannot be easily resolved with these approaches. Ascorbate peroxidase (APEX2)-based proximity labeling has been used to spatiotemporally investigate protein-protein interactions in living cells. In this study, we generated stable human SH-SY5Y cell lines expressing full-length Htt23Q and Htt145Q with N-terminus tagged Flag-APEX2 to quantitatively map the spatiotemporal changes of Htt interactome to a mild acute proteotoxic stress. Our data revealed that normal and mutant Htt (muHtt) are associated with distinct intracellular microenvironments. Specifically, mutant Htt is preferentially associated with intermediate filaments and myosin complexes. Furthermore, the dynamic changes of Htt interactomes in response to stress are different between normal and mutant Htt. Vimentin is identified as one of the most significant proteins that preferentially interacts with muHtt in situ. Further functional studies demonstrated that mutant Htt affects the vimentin's function of regulating proteostasis in healthy and HD human neural stem cells. Taken together, our data offer important insights into the molecular functions of normal and mutant Htt by providing a list of Htt-interacting proteins in their natural cellular context for further studies in different HD models.


Subject(s)
Huntington Disease , Neural Stem Cells , Neuroblastoma , Humans , Vimentin/genetics , Proteomics , Neural Stem Cells/metabolism , Mutation , Huntingtin Protein/genetics , Huntington Disease/metabolism , Tumor Microenvironment
5.
Pathogens ; 11(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35745497

ABSTRACT

Cerebral malaria (CM) is the most severe neurological complication of malaria caused by Plasmodium falciparum infection. The available antimalarial drugs are effective at clearing the parasite, but the mortality rate remains as high as 20% of CM cases. At the vascular level, CM is characterized by endothelial activation and dysfunction. Several biomarkers of endothelial activation have been associated with CM severity and mortality, making the brain vascular endothelium a potential target for adjunctive therapies. Statins and Angiotensin II Receptor Blockers (ARBs) are drugs used to treat hypercholesterolemia and hypertension, respectively, that have shown endothelial protective activity in other diseases. Here, we used a combination of a statin (atorvastatin) and an ARB (irbesartan) as adjunctive therapy to conventional antimalarial drugs in a mouse experimental model of CM. We observed that administration of atorvastatin-irbesartan combination decreased the levels of biomarkers of endothelial activation, such as the von Willebrand factor and angiopoietin-1. After mice developed neurological signs of CM, treatment with the combination plus conventional antimalarial drugs increased survival rates of animals 3-4 times compared to treatment with antimalarial drugs alone, with animals presenting lower numbers and smaller hemorrhages in the brain. Taken together, our results support the hypothesis that inhibiting endothelial activation would greatly reduce the CM-associated pathology and mortality.

6.
Cell Mol Neurobiol ; 42(8): 2757-2771, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34347195

ABSTRACT

Neurons are susceptible to different cellular stresses and this vulnerability has been implicated in the pathogenesis of Huntington's disease (HD). Accumulating evidence suggest that acute or chronic stress, depending on its duration and severity, can cause irreversible cellular damages to HD neurons, which contributes to neurodegeneration. In contrast, how normal and HD neurons respond during the resolution of a cellular stress remain less explored. In this study, we challenged normal and HD cells with a low-level acute ER stress and examined the molecular and cellular responses after stress removal. Using both striatal cell lines and primary neurons, we first showed the temporal activation of p-eIF2α-ATF4-GADD34 pathway in response to the acute ER stress and during recovery between normal and HD cells. HD cells were more vulnerable to cell death during stress recovery and were associated with increased number of apoptotic/necrotic cells and decreased cell proliferation. This is also supported by the Gene Ontology analysis from the RNA-seq data which indicated that "apoptosis-related Biological Processes" were more enriched in HD cells during stress recovery. We further showed that HD cells were defective in restoring global protein synthesis during stress recovery and promoting protein synthesis by an integrated stress response inhibitor, ISRIB, could attenuate cell death in HD cells. Together, these data suggest that normal and HD cells undergo distinct mechanisms of transcriptional reprogramming, leading to different cell fate decisions during the stress recovery.


Subject(s)
Huntington Disease , Apoptosis , Cell Death , Corpus Striatum/pathology , Humans , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Neurons/metabolism
7.
BMC Med Genomics ; 14(1): 176, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34215255

ABSTRACT

BACKGROUND: Huntingtin (Htt) protein is the product of the gene mutated in Huntington's disease (HD), a fatal, autosomal dominant, neurodegenerative disorder. Normal Htt is essential for early embryogenesis and the development of the central nervous system. However, the role of Htt in adult tissues is less defined. Following the recent promising clinical trial in which both normal and mutant Htt mRNA were knocked down in HD patients, there is an urgent need to fully understand the molecular consequences of knocking out/down Htt in adult tissues. Htt has been identified as an important transcriptional regulator. Unbiased investigations of transcriptome changes with RNA-sequencing (RNA-Seq) have been done in multiple cell types in HD, further confirming that transcriptional dysregulation is a central pathogenic mechanism in HD. However, there is lack of direct understanding of the transcriptional regulation by normal Htt. METHODS: To investigate the transcriptional role of normal Htt, we first knocked out Htt in the human neuroblastoma SH-SY5Y cell line using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) gene editing approach. We then performed RNA-seq analysis on Htt-null and wild type SH-SY5Y cells to probe the global transcriptome changes induced by Htt deletion. RESULTS: In general, Htt has a widespread effect on gene transcription. Functional analysis of the differentially expressed genes (DEGs) using various bioinformatic tools revealed irregularities in pathways related to cell communication and signaling, and more specifically those related to neuron development, neurotransmission and synaptic signaling. We further examined the transcription factors that may regulate these DEGs. Consistent with the disrupted pathways associated with cellular development, we showed that Htt-null cells exhibited slower cell proliferation than wild type cells. We finally validated some of the top DEGS with quantitative RT-PCR. CONCLUSIONS: The widespread transcriptome changes in Htt-null cells could be directly caused by the loss of Htt-mediated transcriptional regulation or due to the secondary consequences of disruption in the gene regulatory network. Our study therefore provides valuable information about key genes associated with Htt-mediated transcription and improves our understanding of the molecular mechanisms underlying the cellular functions of normal and mutant Htt.


Subject(s)
RNA-Seq , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...